Title of article :
On the local well-posedness for some systems of coupled KdV equations Original Research Article
Author/Authors :
Borys Alvarez-Samaniego، نويسنده , , Xavier Carvajal، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
24
From page :
692
To page :
715
Abstract :
Using the theory developed by Kenig, Ponce, and Vega, we prove that the Hirota–Satsuma system is locally well-posed in Sobolev spaces Hs(R)×Hs(R)Hs(R)×Hs(R) for 3/4−3/4s>−3/4, by establishing new mixed-bilinear estimates involving the two Bourgain-type spaces View the MathML sourceXs,b−α− and View the MathML sourceXs,b−α+ adapted to View the MathML source∂t+α−∂x3 and View the MathML source∂t+α+∂x3 respectively, where |α+|=|α−|≠0|α+|=|α−|≠0.
Keywords :
Hirota–Satsuma system , Gear–Grimshaw system , KdV equation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860383
Link To Document :
بازگشت