Title of article :
Viscosity approximation method for accretive operator in Banach space Original Research Article
Author/Authors :
Rudong Chen، نويسنده , , Zhichuan Zhu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
1356
To page :
1363
Abstract :
Let XX be a uniformly smooth Banach space, CC be a closed convex subset of XX, and AA an m-accretive operator with a zero. Consider the iterative method that generates the sequence {xn}{xn} by the algorithm xn+1=αnf(xn)+(1−αn)Jrnxn,xn+1=αnf(xn)+(1−αn)Jrnxn, Turn MathJax on where αnαn and γnγn are two sequences satisfying certain conditions, JrJr denotes the resolvent (I+rA)−1(I+rA)−1 for r>0r>0, and f:C→Cf:C→C be a fixed contractive mapping. Then as n→∞n→∞, the sequence {xn}{xn} strongly converges to a point in F(A)F(A). The results presented extends and improves the corresponding results of Hong-Kun Xu [Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631–643].
Keywords :
accretive operator , Uniformly smooth , Fixed point , Banach limit
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860442
Link To Document :
بازگشت