Title of article :
Massera-type theorem for the existence of C(n)C(n)-almost-periodic solutions for partial functional differential equations with infinite delay
Author/Authors :
Khalil Ezzinbi، نويسنده , , Samir Fatajou، نويسنده , , Gaston Mandata N’guérékata، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
12
From page :
1413
To page :
1424
Abstract :
In this paper, we study the existence of C(n)C(n)-almost-periodic solutions for partial functional differential equations with infinite delay. We assume that the undelayed part is not necessarily densely defined and satisfies the Hille–Yosida condition. We use the reduction principle developed recently in [M. Adimy, K. Ezzinbi, A. Ouhinou, Variation of constants formula and almost-periodic solutions for some partial functional differential equations with infinite delay, Journal of Mathematical Analysis and Applications 317 (2006) 668–689] to prove the existence of a C(n)C(n)-almost- periodic solution when there is at least one bounded solution in R+R+. We give an application to the Lotka–Volterra model with diffusion.
Keywords :
Reduction principle , C(n)C(n)-almost-periodic solution , integral solution , Fading memory space , C0C0-semigroup , exponential dichotomy , Hille–Yosida condition , infinite delay
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860448
Link To Document :
بازگشت