Title of article :
A general iterative method for an infinite family of nonexpansive mappings Original Research Article
Author/Authors :
Yonghong Yao، نويسنده , , Yeong-Cheng Liou، نويسنده , , Rudong Chen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
11
From page :
1644
To page :
1654
Abstract :
Let HH be a real Hilbert space. Consider the iterative sequence xn+1=αnγf(xn)+βnxn+((1−βn)I−αnA)Wnxn,xn+1=αnγf(xn)+βnxn+((1−βn)I−αnA)Wnxn, Turn MathJax on where γ>0γ>0 is some constant, f:H→Hf:H→H is a given contractive mapping, AA is a strongly positive bounded linear operator on HH and WnWn is the WW-mapping generated by an infinite countable family of nonexpansive mappings T1,T2,…,Tn,…T1,T2,…,Tn,… and λ1,λ2,…,λn,…λ1,λ2,…,λn,… such that the common fixed points set View the MathML sourceF≔⋂n=1∞Fix(Tn)≠0̸. Under very mild conditions on the parameters, we prove that {xn}{xn} converges strongly to p∈Fp∈F where pp is the unique solution in FF of the following variational inequality: View the MathML source〈(A−γf)p,p−x∗〉≤0for allx∗∈F, Turn MathJax on which is the optimality condition for the minimization problem
Keywords :
Fixed point , Minimization problem , Iterative method , Nonexpansive mapping , Variational inequality
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2008
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860466
Link To Document :
بازگشت