Author/Authors :
Hanying Feng، نويسنده , , Hairong Lian، نويسنده , , Weigao Ge، نويسنده ,
Abstract :
We apply an extension of Mawhin’s continuation theorem due to Ge to show the existence of at least one symmetric solution of the multipoint boundary value problem for the one-dimensional pp-Laplacian at resonance
View the MathML source(ϕp(x′(t)))′=f(t,x(t),x′(t)),t∈(0,1),
Turn MathJax on
subject to the boundary conditions
View the MathML sourcex(0)=∑i=1nμix(ξi),x(1)=∑i=1nμix(ηi),
Turn MathJax on
where View the MathML sourceϕp(s)=|s|p−2s,p>1,0<ξ1<ξ2<⋯<ξn<1/2,ξi+ηi=1,i=1,2,…,n,∑i=1nμi=1,f:[0,1]×R2→R with f(t,u,v)=f(1−t,u,−v)f(t,u,v)=f(1−t,u,−v) for (t,u,v)∈[0,1]×R2(t,u,v)∈[0,1]×R2, satisfying the Carathéodory conditions.
Keywords :
pp-Laplacian , Resonance , Multipoint boundary value problem , Symmetric solution , continuation theorem