Title of article :
Boundedness and blowup for nonlinear degenerate parabolic equations Original Research Article
Author/Authors :
Shaohua Chen، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
1087
To page :
1095
Abstract :
The author deals with the quasilinear parabolic equation ut=[uα+g(u)]Δu+buα+1+f(u,∇u)ut=[uα+g(u)]Δu+buα+1+f(u,∇u) with Dirichlet boundary conditions in a bounded domain ΩΩ, where ff and gg are lower-order terms. He shows that, under suitable conditions on ff and gg, whether the solution is bounded or blows up in a finite time depends only on the first eigenvalue of −Δ−Δ in ΩΩ with Dirichlet boundary condition. For some special cases, the result is sharp.
Keywords :
Porous medium equation , Global existence , Quasilinear parabolic equation , Blowup solutions
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860818
Link To Document :
بازگشت