Title of article :
Strong convergence of composite iterative schemes for zeros of m-accretive operators in Banach spaces Original Research Article
Author/Authors :
L.-C. Ceng، نويسنده , , A.R. Khan، نويسنده , , Q.H. Ansari، نويسنده , , J.-C. Yao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
1830
To page :
1840
Abstract :
We introduce a new composite iterative scheme to approximate a zero of an mm-accretive operator AA defined on uniform smooth Banach spaces and a reflexive Banach space having a weakly continuous duality map. It is shown that the iterative process in each case converges strongly to a zero of AA. The results presented in this paper substantially improve and extend the results due to Ceng et al. [L.C. Ceng, H.K. Xu, J.C. Yao, Strong convergence of a hybrid viscosity approximation method with perturbed mappings for nonexpansive and accretive operators, Taiwanese J. Math. (in press)], Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60] and Xu [H.K. Xu, Strong convergence of an iterative method for nonexpansive and accretive operators, J. Math. Anal. Appl. 314 (2006) 631–643]. Our work provides a new approach for the construction of a zero of mm-accretive operators.
Keywords :
Weakly continuous duality map , mm-accretive operator , Uniformly smooth , Composite iterative scheme , Zero of an operator
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860879
Link To Document :
بازگشت