Title of article :
Local well-posedness and quantitative ill-posedness for the Ostrovsky equation Original Research Article
Author/Authors :
J. Pedro Isaza، نويسنده , , Jorge Mejia، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
11
From page :
2306
To page :
2316
Abstract :
In this article we consider the initial value problem (IVP) for the Ostrovsky equation: View the MathML source∂tu−∂x3u∓∂x−1u+u∂xu=0,x∈R,t∈R,u(x,0)=u0(x), Turn MathJax on with initial data in Sobolev spaces Hs(R)Hs(R). We prove that if View the MathML sources>−34 this IVP is locally well-posed in Hs(R)Hs(R) and if View the MathML sources<−34 the IVP is not quantitatively well-posed in Hs(R)Hs(R).
Keywords :
Nonlinear dispersive equations , Local solutions
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860925
Link To Document :
بازگشت