Title of article :
Lorentz–Sobolev spaces and systems of Schrödinger equations in image Original Research Article
Author/Authors :
Daniele Cassani، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
9
From page :
2846
To page :
2854
Abstract :
We study the connection between the improvement of limiting Sobolev’s embeddings within the context of Lorentz spaces and the variational approach to systems of nonlinear Schrödinger equations. We show that Lorentz–Sobolev spaces appear as a natural function space domain for the related energy functional. Moreover, in this framework the nonlinearity may exhibit a supercritical growth with respect to the maximal growth prescribed by the Pohožaev–Trudinger–Moser inequality and still preserving a variational structure.
Keywords :
Elliptic systems , Schr?dinger equations , Lorentz spaces , critical growth , Trudinger–Moser inequality , Limiting Sobolev’s embeddings
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
860986
Link To Document :
بازگشت