Title of article :
Multiple solutions of singular three-point boundary value problems on [0,∞)
Author/Authors :
Bingmei Liu، نويسنده , , Lishan Liu، نويسنده , , Yonghong Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
10
From page :
3348
To page :
3357
Abstract :
In this paper, we study the existence of single and multiple solutions of three-point boundary value problems for the following nonlinear singular second-order differential equations View the MathML source{x″(t)−px′(t)−qx(t)+h(t)f(t,x(t))=0,t∈(0,+∞),ax(0)−bx′(0)−kx(ξ)=c≥0,limt→+∞x(t)ert=d≥0, Turn MathJax on where View the MathML sourcep,b≥0,a>k>0,q>0,0<ξ<+∞,r∈[0,p+p2+4q2], h:(0,+∞)→(0,+∞)h:(0,+∞)→(0,+∞) is continuous and may be singular at t=0t=0, f:[0,+∞)×[0,+∞)→(−∞,+∞)f:[0,+∞)×[0,+∞)→(−∞,+∞) is continuous and may take a negative value. By applying the technique of lower and upper solutions and the theory of topological degree, we obtain the conditions for the existence of at least one solution and at least three solutions respectively.
Keywords :
topological degree , lower and upper solutions , Half-line , Multiple solutions , Three point
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861038
Link To Document :
بازگشت