Title of article :
Local well-posedness of the Ostrovsky, Stepanyams and Tsimring equation in Sobolev spaces of negative indices
Original Research Article
Author/Authors :
Xiangqing Zhao، نويسنده , , Shangbin Cui، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In this paper we prove, by using the method of bilinear estimate in the Bourgain type spaces, that the initial value problem of the OST equation ut+uxxx+η(Hux+Huxxx)+uux=0ut+uxxx+η(Hux+Huxxx)+uux=0 (x∈Rx∈R, t≥0t≥0), where η>0η>0 and HH denotes the usual Hilbert transformation, is locally well-posed in the Sobolev space Hs(R)Hs(R) when s>−1s>−1.
Keywords :
OST equation , initial value problem , Local well-posedness
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications