Title of article :
Positive solutions to critical growth biharmonic elliptic problems under Steklov boundary conditions
Original Research Article
Author/Authors :
Filippo Gazzola، نويسنده , , Dario Pierotti، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We study the fourth order nonlinear critical problem Δ2u=u2∗−1Δ2u=u2∗−1 in the unit ball of RnRn (n≥5n≥5), subject to the Steklov boundary conditions u=Δu−duν=0u=Δu−duν=0 on ∂B∂B. We provide the exact range of the parameter dd for which this problem admits a positive (radial) solution. We also show that the solution is unique in this range and in the class of radially symmetric functions. Finally, we study the behavior of the solution when dd tends to the extremals of this range. These results complement previous results in [E. Berchio, F. Gazzola, T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Differential Equations 12 (2007) 381–406].
Keywords :
Semilinear biharmonic problems , Steklov boundary conditions , critical growth
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications