Title of article :
Regularity and time-periodicity for a nematic liquid crystal model
Original Research Article
Author/Authors :
Blanca Climent-Ezquerra، نويسنده , , Francisco Guillén-Gonz?lez، نويسنده , , M. Jesus Moreno-Iraberte، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In this paper two main results are obtained for a nematic liquid crystal model with time-dependent boundary Dirichlet data for the orientation of the crystal molecules. First, the initial-boundary problem is considered, obtaining the existence of global in time (up to infinity time) weak solution, the existence of global regular solution for viscosity coefficient big enough, and the weak/strong uniqueness. Second, using these previous results and the existence of time-periodic weak solutions proved in [B. Climent-Ezquerra, F. Guillén-González, M.A. Rojas-Medar, Reproductivity for a nematic liquid crystal model, Z. Angew. Math. Phys. 576 (6) (2006) 984–998], the regularity of any time-periodic weak solution is deduced for viscosity coefficient big enough.
Keywords :
Solution up to infinity time , Uniqueness , Time-periodic solutions , Navier–Stokes equations , Nematic liquid crystal models , Coupled nonlinear parabolic system
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications