Title of article :
Periodic solutions for some nonautonomous semilinear boundary evolution equations
Original Research Article
Author/Authors :
T. Akrid، نويسنده , , L. Maniar، نويسنده , , A. Ouhinou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In this work we study the Massera problem for the existence of a periodic mild solution of a class of nonautonomous semilinear boundary evolution equations
equation(0.1)
View the MathML source{x′(t)=Am(t)x(t)+f(t,x(t)),t≥0,L(t)x(t)=Φ(t)x(t)+g(t,x(t)),t≥0,x(0)=x0.
Turn MathJax on
First, we prove the existence of a periodic solution for nonhomogeneous boundary evolution equations under the existence of a bounded solution on the right half real line. Next, by using a fixed point theorem, we investigate the existence of periodic solutions in the semilinear case. We end with an application to a periodic heat equation with semilinear boundary conditions.
Keywords :
Evolution family , Fixed point theorem , Spectral decomposition , The monodromy operator , Poincaré map , variation of constants formula , Periodic mild solution
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications