Title of article :
Wave operators to a quadratic nonlinear Klein–Gordon equation in two space dimensions Original Research Article
Author/Authors :
NAKAO HAYASHI، نويسنده , , ELENA I. KAIKINA and PAVEL I. NAUMKIN، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
3826
To page :
3833
Abstract :
We study asymptotics around the final states of solutions to the nonlinear Klein–Gordon equations with quadratic nonlinearities in two space dimensions View the MathML source(∂t2−Δ+m2)u=λu2,(t,x)∈R×R2, where View the MathML sourceλ∈C. We prove that if the final states View the MathML sourceu1+∈Hqq−14−4q(R2)∩H52,1(R2)∩H12(R2), Turn MathJax on View the MathML sourceu2+∈Hqq−13−4q(R2)∩H32,1(R2)∩H11(R2), Turn MathJax on and View the MathML source‖u1+‖H12+‖u2+‖H11 Turn MathJax on is sufficiently small, where 4
Keywords :
Quadratic nonlinearity , Two space dimensions , Nonlinear Klein–Gordon equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861493
بازگشت