Author/Authors :
NAKAO HAYASHI، نويسنده , , ELENA I. KAIKINA and PAVEL I. NAUMKIN، نويسنده ,
Abstract :
We study asymptotics around the final states of solutions to the nonlinear Klein–Gordon equations with quadratic nonlinearities in two space dimensions View the MathML source(∂t2−Δ+m2)u=λu2,(t,x)∈R×R2, where View the MathML sourceλ∈C. We prove that if the final states
View the MathML sourceu1+∈Hqq−14−4q(R2)∩H52,1(R2)∩H12(R2),
Turn MathJax on
View the MathML sourceu2+∈Hqq−13−4q(R2)∩H32,1(R2)∩H11(R2),
Turn MathJax on
and
View the MathML source‖u1+‖H12+‖u2+‖H11
Turn MathJax on
is sufficiently small, where 4
Keywords :
Quadratic nonlinearity , Two space dimensions , Nonlinear Klein–Gordon equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications