Title of article :
Optimization of pinhole collimator for small animal SPECT using Monte Carlo simulation
Author/Authors :
Choe، Yearn Seong نويسنده , , Kim، Sang Eun نويسنده , , Lee، Kyung-Han نويسنده , , Choi، Yong نويسنده , , Kim، Byung-Tae نويسنده , , Song، Tae Yong نويسنده , , Chung، Yong Hyun نويسنده , , Jung، Jin Ho نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
-326
From page :
327
To page :
0
Abstract :
The aim of this study is to design an optimized pinhole collimator using Monte Carlo simulation for the development of an ultra high-resolution SPECT using a position sensitive photo-multiplier tube. Simulations using Monte Carlo NParticle Transport code, version 4c were performed to model the pinhole SPECT system. The simulation geometries consist of a cone-shaped pinhole collimator with tungsten aperture and a NaI(Tl) scintillation crystal measuring 6 mm in thickness and 120 mm in diameter. Spatial resolution, sensitivity, edge penetration, and scatter fraction were simulated by changing the pinhole diameter and channel height. The optimal ranges of pinhole diameter and channel height were determined from tradeoff curves of resolution and sensitivity and from penetration and scatter fraction. Tradeoff curves allowed us to determine the optimal range of pinhole diameter to be from 1 mm to 1.5 mm for the system configured in this study. The penetration and scatter fraction curve indicated that the channeled aperture was preferable over knife-edge. The optimal range of channel height was from 0.3 to 0.6 mm. The results demonstrate that the pinhole collimator designed in this study could be utilized to perform ultra high-resolution small animal imaging.
Keywords :
Biodegradable dissolved organic carbon , Cell immobilization , bioreactor , Determination , Continuous
Journal title :
IEEE Transactions on Nuclear Science
Serial Year :
2003
Journal title :
IEEE Transactions on Nuclear Science
Record number :
86155
Link To Document :
بازگشت