Title of article :
Multiple solutions for the image-Laplace operator with critical growth
Original Research Article
Author/Authors :
Pablo L. De N?poli، نويسنده , , Juli?n Fern?ndez Bonder، نويسنده , , Anal?a Silva، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
In this paper we show the existence of at least three nontrivial solutions to the following quasilinear elliptic equation −Δpu=|u|p∗−2u+λf(x,u)−Δpu=|u|p∗−2u+λf(x,u) in a smooth bounded domain ΩΩ of RNRN with homogeneous Dirichlet boundary conditions on ∂Ω∂Ω, where p∗=Np/(N−p)p∗=Np/(N−p) is the critical Sobolev exponent and Δpu=div(|∇u|p−2∇u)Δpu=div(|∇u|p−2∇u) is the pp-Laplacian. The proof is based on variational arguments and the classical concentration compactness method.
Keywords :
pp-Laplace equations , critical growth , variational methods
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications