Title of article :
Nonlinearities and nontrivial solutions for the nonlinear hyperbolic system Original Research Article
Author/Authors :
Tacksun Jung، نويسنده , , Q-Heung Choi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
We study the uniqueness and the existence of multiple nontrivial solutions u(x,t)u(x,t) for a perturbation [(u+v+1)+−1][(u+v+1)+−1] of the hyperbolic system with Dirichlet boundary condition
equation(0.1)
View the MathML sourceutt−uxx=μ[(u+2v+1)+−1]in (−π2,π2)×R,
Turn MathJax on
View the MathML sourcevtt−vxx=ν[(u+2v+1)+−1]in (−π2,π2)×R,
Turn MathJax on
where u+=max{u,0}u+=max{u,0}, μ,νμ,ν are nonzero constants. Here the nonlinearity (μ+2ν)[(w+1)+−1](μ+2ν)[(w+1)+−1] crosses the eigenvalues of the wave operator.
Keywords :
Hyperbolic system , Eigenvalue problem , Dirichlet boundary condition , Uniqueness
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications