Title of article :
Ordinary, Bayes, empirical Bayes, and non-parametric reliability analysis for the modified Gumbel failure model Original Research Article
Author/Authors :
Branko Miladinovic، نويسنده , , Chris P. Tsokos، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Abstract :
The Gumbel, or double exponential, probability distribution function is modified in order to characterize the failure times of a given system. The maximum likelihood (ML), minimum variance unbiased (MVU), Bayes, empirical Bayes, and non-parametric kernel density estimates of the reliability, failure rate, and cumulative failure rate functions are being studied. We also study target time subject to a specified reliability. Numerical computations are given to illustrate the usefulness of our study.
Keywords :
Bayesian inference , Extreme value distribution , Lindley procedure , Minimum variance unbiased estimate , Kernel density estimation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications