Title of article :
Approximate gamma–beta type functions Original Research Article
Author/Authors :
Young-Whan Lee، نويسنده , , Gwang Hui Kim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2009
Pages :
8
From page :
1567
To page :
1574
Abstract :
We show that every unbounded approximate gamma–beta type function is of gamma–beta type. That is, we obtain the superstability of a gamma–beta type functional equation β(x,y)f(x+y)=f(x)f(y)β(x,y)f(x+y)=f(x)f(y) Turn MathJax on and also investigate the stability in the sense of RR. Ger of this equation in the following setting : View the MathML source|β(x,y)f(x+y)f(x)f(y)−1|≤φ(x,y). Turn MathJax on From these results, we obtain stabilities of a generalized exponential functional equation and Cauchy’s gamma–beta functional equation.
Keywords :
Gamma and beta functional equation , Cauchy functional equation , functional equation , Superstability , Stability , Exponential functional equation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2009
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
861907
Link To Document :
بازگشت