Title of article :
Nonlinear elliptic equations with subhomogeneous potentials Original Research Article
Author/Authors :
M. Badiale، نويسنده , , S. Rolando، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
602
To page :
617
Abstract :
We prove the existence of nonnegative symmetric solutions to the semilinear elliptic equation View the MathML source−△u+V(|y1|,…,|yk|)u=g(u)in RN Turn MathJax on where x=(z,y1,…,yk)∈RN0×RN1×⋯×RNk=RNx=(z,y1,…,yk)∈RN0×RN1×⋯×RNk=RN with N≥3N≥3, k≥1k≥1, N0≥0N0≥0 and Ni≥2Ni≥2 for i>0i>0. The nonlinearity gg and the potential VV are, respectively, a continuous function, not necessarily superlinear at infinity, and a positive measurable function, not necessarily homogeneous but satisfying a subhomogeneity condition, which implies vanishing at infinity and singularity at least at the origin. This also yields the existence of nonrotating solitary waves and vortices with a critical frequency for nonlinear Schrödinger and Klein–Gordon equations with singular cylindrical potentials.
Keywords :
Semilinear elliptic PDE , Singular vanishing potential , Nonlinear Schr?dinger and Klein–Gordon equations , Vortices
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862118
Link To Document :
بازگشت