Title of article :
A free boundary problem for the image-Laplacian Original Research Article
Author/Authors :
Juli?n Fern?ndez Bonder، نويسنده , , Sandra Mart?nez، نويسنده , , Noemi Wolanski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
26
From page :
1078
To page :
1103
Abstract :
We consider the optimization problem of minimizing View the MathML source∫Ω1p(x)|∇u|p(x)+λ(x)χ{u>0}dx in the class of functions W1,p(⋅)(Ω)W1,p(⋅)(Ω) with View the MathML sourceu−φ0∈W01,p(⋅)(Ω), for a given φ0≥0φ0≥0 and bounded. W1,p(⋅)(Ω)W1,p(⋅)(Ω) is the class of weakly differentiable functions with View the MathML source∫Ω|∇u|p(x)dx<∞. We prove that every solution uu is locally Lipschitz continuous, that it is a solution to a free boundary problem and that the free boundary, Ω∩∂{u>0}Ω∩∂{u>0}, is a regular surface.
Keywords :
Variable exponent spaces , free boundaries , Minimization
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862161
Link To Document :
بازگشت