Title of article :
Weak convergence theorems for a finite family of strict pseudocontractions Original Research Article
Author/Authors :
C.E. Chidume، نويسنده , , Naseer Shahzad، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
1257
To page :
1265
Abstract :
Let EE be a uniformly smooth real Banach space which is also uniformly convex and KK be a nonempty closed convex subset of EE. Let T:K→KT:K→K be a λλ-strict pseudocontraction for some 0≤λ<10≤λ<1 with x∗∈F(T):={x∈K:Tx=x}≠0̸x∗∈F(T):={x∈K:Tx=x}≠0̸. For a fixed x0∈Kx0∈K, define a sequence {xn}{xn} by xn+1=(1−αn)xn+αnTxnxn+1=(1−αn)xn+αnTxn, where {αn}{αn} is a sequence in [0,1][0,1] satisfying the following conditions: (i) View the MathML source∑n=0∞αn=∞; (ii) View the MathML source∑n=0∞αn2<∞. Then, {xn}{xn} converges weakly to a fixed point of TT. Furthermore, weak convergence theorems are proved for a common fixed point for a finite family of strict pseudocontractions.
Keywords :
Uniformly convex Banach spaces , fixed points , Strict pseudocontractions , Weak convergence theorems , Uniformly smooth Banach spaces
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862175
Link To Document :
بازگشت