Title of article :
Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms Original Research Article
Author/Authors :
Mohammad A. Rammaha، نويسنده , , Sawanya Sakuntasathien، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
26
From page :
2658
To page :
2683
Abstract :
We focus on the global well-posedness of the system of nonlinear wave equations utt−Δu+(d|u|k+e|v|l)|ut|m−1ut=f1(u,v)utt−Δu+(d|u|k+e|v|l)|ut|m−1ut=f1(u,v) Turn MathJax on vtt−Δv+(d′|v|θ+e′|u|ρ)|vt|r−1vt=f2(u,v),vtt−Δv+(d′|v|θ+e′|u|ρ)|vt|r−1vt=f2(u,v), Turn MathJax on in a bounded domain Ω⊂RnΩ⊂Rn, n=1,2,3n=1,2,3, with Dirichlét boundary conditions. The nonlinearities f1(u,v)f1(u,v) and f2(u,v)f2(u,v) act as a strong source in the system. Under some restriction on the parameters in the system we obtain several results on the existence of local solutions, global solutions, and uniqueness. In addition, we prove that weak solutions to the system blow up in finite time whenever the initial energy is negative and the exponent of the source term is more dominant than the exponents of both damping terms.
Keywords :
weak solutions , wave equations , Blow up of solutions , Energy identity , Damping and source terms
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862308
Link To Document :
بازگشت