Title of article :
Bernstein approximations of nonlinear Sturm–Liouville problems Original Research Article
Author/Authors :
Jacek Gulgowski، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
2982
To page :
2989
Abstract :
In this paper we deal with Sturm–Liouville boundary value problems equation(∗) View the MathML source{u″(t)+φ(t,u(t),u′(t),λ)=0t∈(0,1)l(u)=0 Turn MathJax on and their finitely dimensional Bernstein approximations equation(∗∗) View the MathML source{u″(t)+∑k=0nnkφ(kn,u(kn),u′(kn),λ)tk(1−t)n−k=0t∈(0,1)l(u)=0. Turn MathJax on We prove that branches of nontrivial solutions of (∗) bifurcating from trivial solutions are approximated by branches of solutions of (∗∗). Additionally we apply the global bifurcation theorem to obtain the existence results for nonlinear Sturm–Liouville problems.
Keywords :
Global bifurcation , Sturm–Liouville problem , Bernstein polynomial
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862334
Link To Document :
بازگشت