Title of article :
Schemes for finding minimum-norm solutions of variational inequalities Original Research Article
Author/Authors :
Yonghong Yao، نويسنده , , Rudong Chen، نويسنده , , Hong-Kun Xu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
10
From page :
3447
To page :
3456
Abstract :
Consider the variational inequality (VI) of finding a point x∗x∗ such that equation(∗ ) View the MathML sourcex∗∈Fix(T)and〈(I−S)x∗,x−x∗〉≥0,x∈Fix(T) Turn MathJax on where T,ST,S are nonexpansive self-mappings of a closed convex subset CC of a Hilbert space, and Fix(T)Fix(T) is the set of fixed points of TT. Assume that the solution set ΩΩ of this VI is nonempty. This paper introduces two schemes, one implicit and one explicit, that can be used to find the minimum-norm solution of VI (∗); namely, the unique solution x∗x∗ to the quadratic minimization problem: x∗=argminx∈Ω‖x‖2x∗=argminx∈Ω‖x‖2.
Keywords :
Variational inequality , Nonexpansive mapping , Iterative algorithm , Implicit scheme , Explicit scheme , Minimum norm , Fixed point
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862373
Link To Document :
بازگشت