Title of article :
Structural stability for variable exponent elliptic problems, I: The image-Laplacian kind problems Original Research Article
Author/Authors :
B. Andreianov، نويسنده , , M. Bendahmane، نويسنده , , S. Ouaro، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
23
From page :
2
To page :
24
Abstract :
We study the structural stability (i.e., the continuous dependence on coefficients) of solutions of the elliptic problems under the form View the MathML sourceb(un)−divan(x,∇un)=fn. Turn MathJax on The equation is set in a bounded domain View the MathML sourceΩ of RNRN and supplied with the homogeneous Dirichlet boundary condition on View the MathML source∂Ω. Here bb is a non-decreasing function on RR, and (an(x,ξ))n(an(x,ξ))n is a family of applications which verifies the classical Leray–Lions hypotheses but with a variable summability exponent pn(x)pn(x), 1
Keywords :
p(x)p(x)-Laplacian , Leray–Lions operator , Variable exponent , Thermorheological fluids , Well-posedness , Convergence of minimizers , Young measures , continuous dependence
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862486
بازگشت