Title of article :
Strong convergence of composite iterative schemes for a countable family of nonexpansive mappings in Banach spaces Original Research Article
Author/Authors :
Chakkrid Klin-eam، نويسنده , , Suthep Suantai، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
9
From page :
431
To page :
439
Abstract :
In this paper we propose a new modified viscosity approximation method for approximating common fixed points for a countable family of nonexpansive mappings in a Banach space. We prove strong convergence theorems for a countable family nonexpansive mappings in a reflexive Banach space with uniformly Gateaux differentiable norm under some control conditions. These results improve and extend the results of Jong Soo Jung [J.S. Jung, Convergence on composite iterative schemes for nonexpansive mappings in Banach spaces, Fixed Point Theory and Appl. 2008 (2008) 14 pp., Article ID 167535]. Further, we apply our result to the problem of finding a zero of an accretive operator and extend the results of Kim and Xu [T.H. Kim, H.K. Xu, Strong convergence of modified Mann iterations, Nonlinear Anal. 61 (2005) 51–60], Ceng, et al. [L.-C. Ceng, A.R. Khan, Q.H. Ansari, J.-C, Yao, Strong convergence of composite iterative schemes for zeros of mm-accretive operators in Banach space, Nonlinear Anal. 70 (2009)1830–1840] and Chen and Zhu [R. Chen, Z. Zhu, Viscosity approximation methods for accretive operator in Banach space, Nonlinear Anal. 69 (2008) 1356–1363].
Keywords :
Strong convergence , Viscosity approximation , Countable family nonexpansive mappings , fixed points , Composite iterative schemes
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862522
Link To Document :
بازگشت