Title of article :
The existence of radial solutions for differential inclusion problems in image involving the image-Laplacian Original Research Article
Author/Authors :
Bin Ge، نويسنده , , Xiaoping Xue، نويسنده , , Qingmei Zhou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
12
From page :
622
To page :
633
Abstract :
In this paper we consider a differential inclusion in RNRN involving a p(x)p(x)-Laplacian of the type equation(P) View the MathML source{−Δp(x)u+e(x)|u|p(x)−2u∈∂j(x,u(x)),in RN,u∈W1,p(x)(RN), Turn MathJax on where p:RN→Rp:RN→R is a continuous function satisfying some given assumptions. The approach used in this paper is the variational method for locally Lipschitz functions. More precisely, on the basis of the Weierstrass Theorem and the Mountain Pass Theorem, we prove that there exist at least two nontrivial solutions, when α+p+α−>p+.
Keywords :
p(x)p(x)-Laplacian , Integral functionals , Radial solution , Variable exponent Sobolev space
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862540
Link To Document :
بازگشت