Title of article :
Global bifurcation for equations involving nonhomogeneous operators in an unbounded domain Original Research Article
Author/Authors :
In-Sook Kim، نويسنده , , Yun Ho Kim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
8
From page :
1057
To page :
1064
Abstract :
We study the structure of the set of solutions of a nonlinear equation involving nonhomogeneous operators: View the MathML source−div(ϕ(x,|∇u|)∇u)=μ0g(x)|u|p−2u+f(λ,x,u)in RN Turn MathJax on satisfying certain conditions on ϕ,gϕ,g and ff when μ0μ0 is not an eigenvalue of the pp-Laplacian in some sense. This is based on a bifurcation result on noncompact connected sets of solutions for nonlinear operator equations.
Keywords :
Bifurcation , Nonlinear equation , Nonhomogeneous operator , pp-Laplacian , Weighted Sobolev space
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862576
Link To Document :
بازگشت