Title of article :
Global well-posedness for the Benjamin equation in low regularity Original Research Article
Author/Authors :
Yongsheng Li، نويسنده , , Yifei Wu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
16
From page :
1610
To page :
1625
Abstract :
In this paper we consider the initial value problem of the Benjamin equation View the MathML source∂tu+νH(∂x2u)+μ∂x3u+∂xu2=0, Turn MathJax on where u:R×[0,T]↦Ru:R×[0,T]↦R, and the constants ν,μ∈R,μ≠0ν,μ∈R,μ≠0. We use the I-method to show that it is globally well-posed in Sobolev spaces Hs(R)Hs(R) for s>−3/4s>−3/4. Moreover, we use some argument to obtain a good estimative for the lifetime of the local solution, and employ some multiplier decomposition argument to construct the almost conserved quantities.
Keywords :
Benjamin equation , Global well-posedness , II-method , Bourgain space
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862623
Link To Document :
بازگشت