Title of article :
On the Cauchy problem for a coupled system of third-order nonlinear Schrödinger equations Original Research Article
Author/Authors :
L.M. Bragança، نويسنده , , M. Scialom، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
13
From page :
2991
To page :
3003
Abstract :
We investigate some well-posedness issues for the initial value problem (IVP) associated with the system View the MathML source{2i∂tu+q∂x2u+iγ∂x3u=F1(u,w)2i∂tw+q∂x2w+iγ∂x3w=F2(u,w), Turn MathJax on where F1F1 and F2F2 are polynomials of degree 3 involving uu, ww and their derivatives. This system describes the dynamics of two nonlinear short-optical pulse envelopes u(x,t)u(x,t) and w(x,t)w(x,t) in fibers (Porsezian et al. (1994) [1] and Hasegawa & Kodama (1987) [2]). We prove sharp local well-posedness result for the IVP with data in Sobolev spaces Hs(R)×Hs(R)Hs(R)×Hs(R), s≥1/4s≥1/4 and global well-posedness result with data in Sobolev spaces Hs(R)×Hs(R)Hs(R)×Hs(R), s>3/5s>3/5.
Keywords :
Cauchy problem , Local and global well-posedness , Coupled system of third-order nonlinear Schr?dinger equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2010
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862741
Link To Document :
بازگشت