Title of article :
Rigorous derivation of incompressible type Euler equations from non-isentropic Euler–Maxwell equations
Original Research Article
Author/Authors :
Jianwei Yang، نويسنده , , Shu Wang، نويسنده , , Yong Li، نويسنده , , Dang Luo، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
In this paper, we investigate the convergence of the time-dependent and non-isentropic Euler–Maxwell equations to incompressible Euler equations in a torus via the combined quasi-neutral and non-relativistic limit. For well prepared initial data, the convergences of solutions of the former to the solutions of the latter are justified rigorously by an analysis of asymptotic expansions and energy method.
Keywords :
Non-relativistic limit , Incompressible Euler equations , Quasi-neutral limit , Asymptotic expansion and convergence , Euler–Maxwell equations
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications