Title of article :
The Fourier inversion and the Riemann functional equation
Original Research Article
Author/Authors :
M. Aslam Chaudhry، نويسنده , , A.K. Al-Baiyat، نويسنده , , B. Al-Humaidi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Abstract :
We prove that the Riemann functional equation can be recovered by the Mellin transforms of essentially all the absolutely integrable functions. The present analysis shows also that the Riemann functional equation is equivalent to the Fourier inversion formula. We introduce the notion of a λλ-pair of absolutely integrable functions and show that the components of the λλ-pair satisfy an identity involving convolution type products.
Keywords :
Riemann hypothesis , Zeta function , Critical strip , Critical line , functional equation , Mellin transform , Convolution-type products , Fourier inversion formula
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications