Title of article :
The generalized Korteweg–de Vries–Burgers equation in H2®
Author/Authors :
Tomasz Dlotko، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
721
To page :
732
Abstract :
The generalized KdV–Burgers equation ut+(δuxx+g(u))x−νuxx+γu=f(x)ut+(δuxx+g(u))x−νuxx+γu=f(x), δ,ν>0,γ≥0δ,ν>0,γ≥0, is considered in this paper. Using the parabolic regularization technique we prove local and global solvability in H2(R)H2(R) of the Cauchy problem for this equation. Several regularity properties of the approximations stay valid for solutions constructed in such a way. Next, for when γ>0γ>0, we study the asymptotic behavior of the corresponding semigroup on H2(R)H2(R), constructing the (H2(R),H3−(R))(H2(R),H3−(R)) global attractor.
Keywords :
global attractor , Generalized KdV–Burgers equation , global solvability , Parabolic approximation
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
862886
Link To Document :
بازگشت