Title of article :
On a numerical method for a homogeneous, nonlinear, nonlocal, elliptic boundary value problem Original Research Article
Author/Authors :
John R. Cannon، نويسنده , , Daniel J. Galiffa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
1702
To page :
1713
Abstract :
In this work we develop a numerical method for the equation: View the MathML source−α(∫01u(t)dt)u″(x)+[u(x)]2n+1=0,x∈(0,1),u(0)=a,u(1)=b. We begin by establishing a priori estimates and the existence and uniqueness of the solution to the nonlinear auxiliary problem via the Schauder fixed point theorem. From this analysis, we then prove the existence and uniqueness to the problem above by defining a continuous compact mapping, utilizing the a priori estimates and the Brouwer fixed point theorem. Next, we analyze a discretization of the above problem and show that a solution to the nonlinear difference problem exists and is unique and that the numerical procedure converges with error 풪(h)풪(h). We conclude with some examples of the numerical process.
Keywords :
Numerical method , Nonlocal , Elliptic , Boundary value problem , Fixed point , mapping
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863011
Link To Document :
بازگشت