Title of article :
Duffing equation and action functional Original Research Article
Author/Authors :
Petr Tomiczek، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
6
From page :
2392
To page :
2397
Abstract :
In this paper, we investigate the periodic nonlinear second order ordinary differential equation with friction View the MathML sourcex″(t)+cx′(t)+g(t,x(t))=f(t),t∈[0,T], Turn MathJax on View the MathML sourcex(0)=x(T),x′(0)=x′(T), Turn MathJax on where c∈Rc∈R, gg is a Caratheodory function, f∈L1(0,T)f∈L1(0,T), a quotient View the MathML sourceg(t,s)s lies between 00 and View the MathML sourcec24+(2πT)2 and a nonlinearity gg satisfies the potential Landesman–Lazer type condition. We introduce a corresponding energy functional and prove that its critical point is a classical solution to this problem.
Keywords :
critical point , Periodic problem , Variational method , Second order ODE
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863070
Link To Document :
بازگشت