Title of article :
Infinitely many homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities Original Research Article
Author/Authors :
Ming-Hai Yang، نويسنده , , Zhi-Qing Han، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
12
From page :
2635
To page :
2646
Abstract :
In this paper we study the existence of homoclinic solutions for second-order Hamiltonian systems with odd nonlinearities View the MathML sourceü−L(t)u+Wu(t,u)=0, where L(t)L(t) and W(t,u)W(t,u) are not assumed to be periodic in tt. We get, under certain assumptions on LL and WW, infinitely many homoclinic solutions for both subquadratic and superquadratic cases by using the fountain theorems in critical point theory.
Keywords :
homoclinic solutions , Fountain theorem , second-order Hamiltonian systems
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863092
Link To Document :
بازگشت