Title of article :
Renormings and the fixed point property in non-commutative L1L1-spaces
Author/Authors :
Carlos A. Hernandez Linares، نويسنده , , Maria A. Japon ?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
8
From page :
3091
To page :
3098
Abstract :
Let MM be a finite von Neumann algebra. It is known that L1(M)L1(M) and every non-reflexive subspace of L1(M)L1(M) fail to have the fixed point property for non-expansive mappings (FPP). We prove a new fixed point theorem for this class of mappings in non-commutative L1(M)L1(M) Banach spaces which lets us obtain a sufficient condition such that a closed subspace of L1(M)L1(M) can be renormed to satisfy the FPP. As a consequence, we deduce that the predual of every atomic finite von Neumann algebra can be renormed with the FPP.
Keywords :
Renorming theory , Non-expansive mappings , Von Neumann algebras , Non-commutative L1L1-spaces , fixed point theory , Measure topology
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863130
Link To Document :
بازگشت