Title of article :
Some eigenvalue results for maximal monotone operators Original Research Article
Author/Authors :
In-Sook Kim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Pages :
9
From page :
6041
To page :
6049
Abstract :
We study the eigenvalue problem of the form 0∈Tx−λCx,0∈Tx−λCx, Turn MathJax on where XX is a real reflexive Banach space with its dual X∗X∗ and T:X⊃D(T)→2X∗T:X⊃D(T)→2X∗ is a maximal monotone multi-valued operator and C:D(T)→X∗C:D(T)→X∗ is a not necessarily continuous single-valued operator. Using the index theory for countably condensing operators, we extend some related results of Kartsatos to the countably condensing case instead of compactness of the approximant JμJμ. Moreover, the solvability of the perturbed problem 0∈Tx+Cx0∈Tx+Cx is discussed in an analogous method to the above problem.
Keywords :
eigenvalues , Maximal monotone operators , Perturbations , index theory , Countably condensing operators
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Serial Year :
2011
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Record number :
863381
Link To Document :
بازگشت