Title of article :
Some eigenvalue results for maximal monotone operators
Original Research Article
Author/Authors :
In-Sook Kim، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2011
Abstract :
We study the eigenvalue problem of the form
0∈Tx−λCx,0∈Tx−λCx,
Turn MathJax on
where XX is a real reflexive Banach space with its dual X∗X∗ and T:X⊃D(T)→2X∗T:X⊃D(T)→2X∗ is a maximal monotone multi-valued operator and C:D(T)→X∗C:D(T)→X∗ is a not necessarily continuous single-valued operator. Using the index theory for countably condensing operators, we extend some related results of Kartsatos to the countably condensing case instead of compactness of the approximant JμJμ. Moreover, the solvability of the perturbed problem 0∈Tx+Cx0∈Tx+Cx is discussed in an analogous method to the above problem.
Keywords :
eigenvalues , Maximal monotone operators , Perturbations , index theory , Countably condensing operators
Journal title :
Nonlinear Analysis Theory, Methods & Applications
Journal title :
Nonlinear Analysis Theory, Methods & Applications