Title of article :
Cluster analysis of the Ising model and universal finite-size scaling
Author/Authors :
Yutaka Okabe، نويسنده , , Kazuhisa Kaneda، نويسنده , , Yusuke Tomita، نويسنده , , Macoto Kikuchi، نويسنده , , Chin-Kun Hu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2000
Pages :
9
From page :
233
To page :
241
Abstract :
The recent progress in the study of finite-size scaling (FSS) properties of the Ising model is briefly reviewed. We calculate the universal FSS functions for the Binder parameter g and the magnetization distribution function p(m) for the Ising model on L1×L2 two-dimensional lattices with tilted boundary conditions. We show that the FSS functions are universal for fixed sets of the aspect ratio L1/L2 and the tilt parameter. We also study the percolating properties of the Ising model, giving attention to the effects of the aspect ratio of finite systems. We elucidate the origin of the complex structure of p(m) for the system with large aspect ratio by the multiple-percolating-cluster argument.
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2000
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
866553
Link To Document :
بازگشت