Title of article :
Scaling transformation of random walk and generalized statistics
Author/Authors :
Fernando A Oliveira، نويسنده , , Josivaldo A Cordeiro، نويسنده , , Alaor S Chaves، نويسنده , , Bernardo A Mello، نويسنده , , Isaac M Xavier Jr.، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2001
Pages :
8
From page :
201
To page :
208
Abstract :
We use a decimation procedure in order to obtain the dynamical renormalization group transformation (RGT) properties of random walk distribution in a 1+1 lattice. We obtain an equation similar to the Chapman–Kolmogorov equation. First we show the existence of invariants of the RGT, and that the Tsallis distribution Rq(x)=[1+b(q−1)x2]1/(1−q) (q>1) is a quasi-invariant of the RGT. We obtain the map q′=f(q) from the RGT and show that this map has two fixed points: q=1, attractor, and q=2, repellor, which are the Gaussian and the Lorentzian, respectively. Finally we use those concepts to show that the nonadditivity of the Tsallis entropy needs to be reviewed.
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2001
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
867172
Link To Document :
بازگشت