Title of article :
Learning by a neural net in a noisy environment—the pseudo-inverse solution revisited
Author/Authors :
W. A. van Leeuwen، نويسنده , , B. Wemmenhove، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
17
From page :
616
To page :
632
Abstract :
A recurrent neural net is studied that learns a set of patterns {ξμ} in the presence of noise. The learning rule is of a Hebbian type. It is well-known that, if noise is absent during the learning process, the resulting final values of the weights wij correspond to what is usually referred to as the pseudo-inverse solution of the fixed point equation associated with the learning rule. In the limit of vanishing noise, the expressions derived in this article for the expectation value of the weights do not converge to the usual pseudo-inverse solution, in contrast to what one might expect. Since biological systems in general are noisy, the usual pseudo-inverse solution is less realistic, in principle, than the solution found in this article.
Journal title :
Physica A Statistical Mechanics and its Applications
Serial Year :
2003
Journal title :
Physica A Statistical Mechanics and its Applications
Record number :
868343
Link To Document :
بازگشت