Author/Authors :
Panu Danwanichakul، نويسنده , , Tawatchai Charinpanitkul، نويسنده ,
Abstract :
Our previously developed integral-equation theories were applied to incorporate the effect of polydispersity in the study of the random sequential addition of spherical particles. By using the simplest uniform size distribution, we found that results from theories were in consistence with the Monte Carlo simulation results. Some deviations were seen, which resulted from the exclusion effects of polydisperse particles. It was found in the simulations that with increasing densities, small particles adsorbed preferentially and the size distribution skewed towards the smaller particles. Therefore, to accurately predict the correct radial distribution functions, the more appropriate size distributions are needed. For all size ranges, which were 0.40d–1.60d, 0.75d–1.25d, and 0.90d–1.10d, the radial distribution functions from theory at number densities of 0.2, 0.4 and 0.65 were in good agreements with those from the simulations.