Title of article :
Inozemtsevʹs hyperbolic spin model and its related spin chain Original Research Article
Author/Authors :
J.C. Barba، نويسنده , , F. Finkel، نويسنده , , A. Gonz?lez-L?pez، نويسنده , , M.A. Rodriguez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2010
Pages :
27
From page :
499
To page :
525
Abstract :
In this paper we study Inozemtsevʹs su(m) quantum spin model with hyperbolic interactions and the associated spin chain of Haldane–Shastry type introduced by Frahm and Inozemtsev. We compute the spectrum of Inozemtsevʹs model, and use this result and the freezing trick to derive a simple analytic expression for the partition function of the Frahm–Inozemtsev chain. We show that the energy levels of the latter chain can be written in terms of the usual motifs for the Haldane–Shastry chain, although with a different dispersion relation. The formula for the partition function is used to analyze the behavior of the level density and the distribution of spacings between consecutive unfolded levels. We discuss the relevance of our results in connection with two well-known conjectures in quantum chaos.
Keywords :
Exactly solvable spin models , Quantum chaos , Spin chains
Journal title :
Nuclear Physics B
Serial Year :
2010
Journal title :
Nuclear Physics B
Record number :
875977
Link To Document :
بازگشت