Title of article :
Non-perturbative solution of matrix models modified by trace-squared terms Original Research Article
Author/Authors :
Igor R. Klebanov، نويسنده , , Akikazu Hashimoto، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
19
From page :
264
To page :
282
Abstract :
We present a non-perturbative solution of large N matrix models modified by terms of the form g(Trø4)2, which add microscopic wormholes to the random surface geometry. For g < gt the sum over surfaces is in the same universality class as the g = 0 theory, and the string susceptibility exponent is reproduced by the conventional Liouville interaction ∼ eα+ø. For g = gt we find a different universality class, and the string susceptibility exponent agrees for any genus with Liouville theory where the interaction term is dressed by the other branch, eα−ø. This allows us to define a double-scaling limit of the g = gt theory. We also consider matrix models modified by terms of the form gO2, where O is a scaling operator. A fine-tuning of g produces a change in this operatorʹs gravitational dimension which is, again, in accord with the change in the branch of the Liouville dressing.
Journal title :
Nuclear Physics B
Serial Year :
1995
Journal title :
Nuclear Physics B
Record number :
877000
Link To Document :
بازگشت