Title of article :
Statistical properties of strings Original Research Article
Author/Authors :
M. Hindmarsh، نويسنده , , K. Strobl، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1995
Pages :
18
From page :
471
To page :
488
Abstract :
We investigate numerically the configurational statistics of strings. The algorithm models an ensemble of global U(1) cosmic strings, or equivalently vortices in superfluid 4He. We use a new method which avoids the specification of boundary conditions on the lattice. We therefore do not have the artificial distinction between short and long string loops or a “second phase” in the string network statistics associated with strings winding around a toroidal lattice. Our lattice is also tetrahedral, which avoids ambiguities associated with the cubic lattices of previous work. We find that the percentage of infinite string is somewhat lower than on cubic lattices, 63% instead of 80%. We also investigate the Hagedorn transition, at which infinite string percolate, controlling the string density by rendering one of the equilibrium states more probable. We measure the percolation threshold, the critical exponent associated with the divergence of a suitably defined susceptibility of the string loops, and that associated with the divergence of the correlation length.
Journal title :
Nuclear Physics B
Serial Year :
1995
Journal title :
Nuclear Physics B
Record number :
877100
Link To Document :
بازگشت