Title of article :
Diversity in Phenotype and Steroid Hormone Dependence in Dendritic Cellsand Macrophages in the Mouse Uterus
Author/Authors :
Keenihan، Sarah N. Hudson نويسنده , , Robertson، Sarah A. نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
-1561
From page :
1562
To page :
0
Abstract :
The dendritic cells and related antigen-presenting cells (APCs) that activate lymphocytes for acquired immunity in the female reproductive tract are not well characterized. The aim of the present study was to examine heterogeneity among uterine APCs in mice and, specifically, to determine whether phenotypically and functionally distinct subpopulations of dendritic cells and macrophages can be identified. Using immunohistochemistry, abundant cells expressing APCrestricted molecules major histocompatibility complex (MHC) class II, F4/80, class A scavenger receptor, macrosialin, and sialoadhesin were evident in estrous mice. Cells expressing the costimulatory molecule B7-2 were rarely observed. Flow cytometric analysis revealed three subpopulations of uterine APCs. Undifferentiated macrophages were F4/80-positive (+), MHC class II-negative (–) cells, of which 70–80% expressed CD11b, but few expressed class A scavenger receptor, macrosialin, or sialoadhesin. Mature macrophages were F4/80+/MHC class II+ cells, of which approximately 50% expressed CD11b, class A scavenger receptor, macrosialin, and sialoadhesin. Uterine dendritic cells were F4/ 80–/MHC class II+ cells, with stimulatory immunoaccessory function relative to uterine macrophages and heterogeneous expression of dendritic markers 33D1, DEC205, CD11c, and CD1. Experiments in ovariectomized mice showed that undifferentiated macrophages were steroid hormone dependent but that mature macrophages and dendritic cells persisted after depletion of ovarian steroid hormones, although with altered phenotypes. In summary, our findings identify three discrete populations of APCs inhabiting the murine uterus and suggest that both mature macrophages and dendritic cells differentiate from undifferentiated macrophage precursor cells. Plasticity in the ontogenetic and functional relationships between uterine dendritic cells and macrophages likely is critical in regulating immune responses conducive to reproductive success.
Keywords :
testis , Gene regulation , spermatid , male reproductive tract , spermatogenesis
Journal title :
Biology of Reproduction
Serial Year :
2004
Journal title :
Biology of Reproduction
Record number :
88027
Link To Document :
بازگشت