Title of article :
Algebraic solution of the Hubbard model on the infinite interval Original Research Article
Author/Authors :
Shuichi Murakami، نويسنده , , Frank G?hmann، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
41
From page :
637
To page :
677
Abstract :
We develop the quantum inverse scattering method for the one-dimensional Hubbard model on the infinite line at zero density. This enables us to diagonalize the Hamiltonian algebraically. The eigenstates can be classified as scattering states of particles, bound pairs of particles and bound states of pairs. We obtain the corresponding creation and annihilation operators and calculate the S-matrix. The Hamiltonian on the infinite line is invariant under the Yangian quantum group Y(su(2)). We show that the n-particle scattering states transform like n-fold tensor products of fundamental representations of Y(su(2) ) and that the bound states are Yangian singlet.
Keywords :
* Zamolodchikov-Faddeev algebra , * Hubbard model , * Yangian , * Quantum inverse scattering
Journal title :
Nuclear Physics B
Serial Year :
1998
Journal title :
Nuclear Physics B
Record number :
880520
Link To Document :
بازگشت