Title of article :
Generalizing the O(N)-field theory to N-colored manifolds of arbitrary internal dimension D Original Research Article
Author/Authors :
Kay J?rg Wiese، نويسنده , , Mehran Kardar and Ramin Golestanian، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 1998
Pages :
54
From page :
469
To page :
522
Abstract :
We introduce a geometric generalization of the O(N)-field theory that describes N-colored membranes with arbitrary dimension D. As the O(N)-model reduces in the limit N → 0 to self-avoiding polymers, the N-colored manifold model leads to self-avoiding tethered membranes. In the other limit, for inner dimension D → 1, the manifold model reduces to the O(N)-field theory. We analyze the scaling properties of the model at criticality by a one-loop perturbative renormalization group analysis around an upper critical line. The freedom to optimize with respect to the expansion point on this line allows us to obtain the exponent ν of standard field theory to much better precision that the usual 1-loop calculations. Some other field theoretical techniques, such as the large N limit and Hartree approximation, can also be applied to this model. By comparison of low- and high-temperature expansions, we arrive at a conjecture for the nature of droplets dominating the 3d Ising model at criticality, which is satisfied by our numerical results. We can also construct an appropriate generalization that describes cubic anisotropy, by adding an interaction between manifolds of the same color. The two parameter space includes a variety of new phases and fixed points, some with Ising criticality, enabling us to extract a remarkably precise value of 0.6315 for the exponent ν in d = 3. A particular limit of the model with cubic anisotropy corresponds to the random bond Ising problem; unlike the field theory formulation, we find a fixed point describing this system at 1-loop order.
Journal title :
Nuclear Physics B
Serial Year :
1998
Journal title :
Nuclear Physics B
Record number :
880994
Link To Document :
بازگشت